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General reaction-diffusion processes with separable equations for correlation functions
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We consider general multispecies models of reaction diffusion processes and obtain a set of constraints on
the rates which give rise to closed systems of equations for correlation functions. Our results are valid in any
dimension and on any type of lattice. We also show that under these conditions the evolution equations for two
point functions at different times are also closed. As an example we introduce a class of two species models
that may be useful for the description of voting processes or the spreading of epidemics.
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I. INTRODUCTION

An interesting class of nonequilibrium problems with
rich dynamical behavior and a vast area for applications
stochastic reaction-diffusion systems~see @1–4# and refer-
ences therein!. These are the processes in which one or s
eral species of particles hop randomly on a lattice, and in
act in various possible ways with each other. In the o
species case, it is convenient to denote a particle by the s
bol 1 and a vacant site~a hole! by the symbol 0. Then a
simple hopping is represented by 110→011. In addition
to exclusion which means that no two particles can occup
single site, the possible interactions include pair creat
(010→111), pair annihilation (111→010), coagula-
tion (111→110), decoagulation, (011→111), birth
(0→1) and death (1→0) processes. Obviously the varie
of elementary processes rapidly increases with the numbe
species.

In general, such lattice systems are difficult to treat
rigorous analytical means and correspondingly, conside
the vast amount of such models, relatively few exact res
are known.

Over the past few years the application of operator f
malism to these stochastic processes and their mappin
quantum spin systems and their generalizations has turne
be quite fruitful. In view of this correspondence, many of t
techniques of quantum spin systems such as free ferm
techniques, Bethe ansatz and related algebraic techni
@5–11#, have been used in the investigation of reactio
diffusion systems, specially in one-dimensional lattice s
tems. Also by using the operator formalism, some of the
techniques such as the matrix product ansatz@12# have been
put to very fruitful use, in solution of one-dimensional st
chastic systems@13# ~see Refs.@1,2,14# and references
therein!. Almost all of the above methods have one limit
tion, they are restricted to one-dimensional lattices, speci
if we are interested in exact solutions.

A common feature of any model of interacting particl
and indeed the main source of difficulty in obtaining exa
solutions is that the equations of motion of correlation fun
tions form an infinite hierarchy, that is, the equation of m
tion of n-point functions include (n11)-point functions and
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in general higher correlation functions. One can truncate
hierarchy at a level by various kinds of approximations, t
simplest and the most common method is to break the h
archy at the first level by the mean field approximatio
However, in some models and in low space dimensions,
amount of diffusive mixing may not be enough to warra
such an approximation. Some of these models may also h
long relaxation times so that their simulation may be diffic
and time consuming. For these models exact solutions
highly desirable.

Interestingly enough, there are models in which the h
archy of equations of correlation functions automatica
breaks at every level, hence the possibility of obtaining ex
solutions. For these models the equations of motion
n-point functions depend only onk-point functions withk
<n. We should stress that while a powerful technique li
matrix product ansatz or its dynamical version@15# only
transform the problem to another equally difficult and y
convenient problem, that is, finding the representations
calculating matrix elements of strings of operators of an
gebra@13,16,17#, for these models the simplification appea
to be genuinely effective. Moreover this property is indepe
dent of the dimension and the geometry of the lattice.
view of its generality this is a great simplification and d
serves to be pursued further from various directions.

The observation of this phenomenon in some models
symmetric exclusion and partial exclusion processes@4,18–
20# led G. M. Schu¨tz @21# to raise the question of classifica
tion of such models, i.e., a general criterion on the react
and diffusion rates such that the resulting equations for
correlation functions decouple. By considering the one s
cies processes and the particle density correlation funct
^n(x)&, he found that from among the 12-parameter fam
of single species reaction diffusion systems, a 10-param
family fall within this class.

Since then this question has been pursued further.
example, one can consider the hole-density correlation fu
tions ^12n(x)& ~the so called empty interval method! with
two @23,24# or three site interactions@25# or even more gen-
eral functions likê a1bn(x)& @22,23,26#. These correlation
functions lead to different sets of constraints on the rates

The aim and the results of the paper

The aim of the present paper is to investigate this ques
for the general multispecies case. That is, we assume
©2002 The American Physical Society14-1
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there are p11 species of particles labeled as ty
0,1,2, . . . p which hop and interact in a lattice of arbitrar
geometry. We interpret particles of type 0 as holes and o
particles as real particles. We assume two body interact
between the particles, and obtain the general condition on
rates, so that the correlation functions of densities of r
particles, i.e., particles of type 1,2, . . . p decouple from the
correlation functions of higher levels in the hierarchy. W
show that under this condition the equation of motion
two-time two-point correlation functions are also close
These types of correlation functions are important in
analysis of voting processes@27#.

In view of the arbitrary number of species in our mod
one will have much more freedom to find an exactly solva
model for description of physical phenomena, specially
the area of chemical kinetics, where one usually has m
than one species of particles.

Since in our analysis and hence in our results, there is
asymmetry between a particle of type 0 and other particle
is important to keep in mind that the interpretation of parti
0 as a hole is not essential. Therefore in adapting a mo
from the class discussed below to a situation of phys
interest, one can change this interpretation and take any o
particle of type 1,2, . . . p to stand for a hole and particle
for a real particle.

For generalp-species models, the number of independ
rates is (p11)42(p11)2. We show that the family of ex-
actly solvable models~in the above sense! live on an
Np-dimensional manifold~hyperplane! whereNpª(p11)4

2(p11)222p3. For the one-species case we findN1516
2422510, in accordance with the results of Schu¨tz @21#.
For the two- and three-species cases we have, respect
N2556 and N35186, where the number of independe
rates for these models are originally 72 and 240, respectiv
For an elaboration on this see the remark 3 in the text.

As an example and for concreteness we study a t
species family and further constrain it with certain ex
symmetries. In this class we can find models suitable for
description of the spread of an epidemic, the exchange
ideas and votes, and the spreading of news or rumor.

We set up the solution of one-point functions for the
models and investigate to a certain extent the propertie
these solutions.

The structure of this paper is as follows: In Sec. II w
introduce our notations and conventions. In Sec. III we
tain the general conditions on the rates. In Sec. IV we c
sider the casep52, and by imposing further symmetry re
quirement on these models we introduce a class of solv
two-species models. In Sec. V we set up the general solu
of the one point functions for this model. We conclude t
paper with a discussion.

II. NOTATIONS AND CONVENTIONS

Throughout the paper we will adhere to notations wh
we will collect here for convenience.For ease of notations
we will consider a one-dimensional lattice which may
infinite or periodic. However, all our results are valid also o
lattices of arbitrary shape and arbitrary dimension. We w
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also work explicitly with nearest neighbor interactions, a
though again our results are valid for arbitrary range o
interactions. These facts have already been shown in
[21] and are also easily verified by reviewing our method
proof, in the sense that no part of the reasoning depends
the underlying lattice or the range of interactions.

We denote the points of the lattice by Latin letters fro
the end of the alphabetx21,x,x11, . . . . In afinite lattice
we number the sites from 1 toL. To each sitex of the lattice,
we assign a random variablet(x) which can takep11 val-
ues 0,1, . . .p. We denote the values of this random variab
when it takes all the values including possibly the value
by Greek lettersa,b,m, . . . , andwhen it takes only the
values different from 0, by Latin letters, from the middle
the alphabet, likei , j ,k,l •. Thus ^ni(x)&ª^dt(x),i& denotes
the average density of particles of typei at site x, or the
probability of sitex being occupied by a particle of typei,
and ^n0(x)&ª^dt(x),0& denotes the probability of this sit
being empty. It thus follows that

(
m50

p

^nm~x!&51. ~1!

We assume that the two particles of typea and b on two
adjacent sites may transform stochastically to particles
type m andn with rateRa,b

m,n . This is written as

a,b→m,n with rate Rab
mn . ~2!

Since a Greek index includes also the value 0, which
interpret as a vacant site, the above transformations inc
all the possible processes conceivable for all types of p
ticles on the two sites. For exampleRi0

0i is the hopping rate of
a particle of typei andR00

k0 is the rate of creation of a particl
of typek from the vacuum andRi j

k0 is the rate with which two
particles of typei and j interact or coagulate to form a pa
ticle of typek.

We will use the operator formalism for Markov processe
This formalism is well known by now, since in the past fe
years it has been used extensively for the analysis
reaction-diffusion processes, specially in one dimension.

In this formalism we should assign a complex (p11)-
dimensional Hilbert spaceCp11 to each site, with ortho-
normal basis states

u0&,u1&, . . . up&, ^mun&5dm,n . ~3!

The Hilbert space of the whole lattice is the tensor produc
all the local Hilbert spaces of the sites. At any given timet,
each configuration of the lattice is given by the values of
random variables of all sites t(1),t(2), . . .t(L).
Such a configuration occurs with probabilit
P(t(1) , t(2) , . . .t(L) ; t)5^t(1) , t(2), . . .t(L)uP(t)& .
The state vectoruP(t)& determines all the probabilities an
its evolution is governed by a Hamiltonian derived from t
rates:

d

dt
uP&5HuP&. ~4!
4-2



hi
he
ng

n

tri

t
he

ua
os
-

o

if
e

rs
e

y by

lso

ent

se
in-

isfy

of
o-
tes,

ed

GENERAL REACTION-DIFFUSION PROCESSES WITH . . . PHYSICAL REVIEW E66, 041114 ~2002!
For convenience we have absorbed the negative sign, w
is usually included in this equation, into the definition of t
Hamiltonian. The probabilities are normalized by requiri
that

(
t(1),t(2), . . .t(L)

^t~1!,t~2!, . . . t~L !uP&51. ~5!

This equation can be rewritten as

^SuP&ª^su ^ LuP&51, ~6!

where^su is defined as

^suª (
m50

p

^mu. ~7!

Note that the Bra statêSu is the sum of all the possible
configurations of the system.

From the master equation~4! and the propertŷSuH50
~as required by conservation of probability!, one obtains the
Heisenberg-like equation of motion for the average of a
time independent observableO:

d

dt
^O~ t !&5^Su@Ô,H#uP~ t !&, ~8!

whereÔ is an appropriately chosen operator whose ma
element gives the average of the observable, i.e.,

^O~ t !&5^SuÔuP~ t !&. ~9!

Note that the time dependence of the average comes from
evolution of probabilities, therefore a better notation for t
average of a time independent observable will be^O&(t).
However, we use the notation̂O(t)&, since it will be con-
venient when we consider two point functions at uneq
times. Consider a completely general Markov system wh
configurations are labeled byC and a time independent ob
servableO of the configurations. We have

^O~ t2!O~ t1!&ª (
C2 ,C1

O~C2!O~C1!P~C2 ,t2 ;C1 ,t1!.

~10!

In the operator formalism, it is easily shown that this tw
point function is represented as

^O~ t2!O~ t1!&ª^SuÔ~ t2!Ô~ t1!uP~0!&, ~11!

where Ô(t) is the Heisenberg-like operator,Ô(t)
ªe2tHÔetH. The above correspondence is also true for d
ferent kinds of operators. In particular we hav

^O(t)O(0)&ª^Sue2tHÔetHÔuP(0)&. We then have

d

dt
^O~ t !O~0!&5^Su@Ô~ t !,H#ÔuP~0!&

5^Su@Ô,H#etHÔuP~0!&, ~12!
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where we have used̂Sue2tH5^Su.
Returning to our model, the local operatorsEa,b

ªua&^bu act on the states of a site as:Ea,bum&5db,mua&. Of
particular interest are the diagonal operato
E00,E11, . . .Epp which act as number operators for th
holes, particles of type 1, to particles of typep. Hereafter we
abbreviate these diagonal operators and show them onl
one index instead of two, i.e.,Em stands forEmm :

E05S 1

0

0

0

0

D •••Ep5S 0

0

0

0

1

D .

~13!

The above operators have the commutation relations

@Eab ,Emn#5dbmEan2dnaEmb . ~14!

Moreover the following property of these operators is a
important in the sequel:

^suEab5^suEbb5:^suEb , ~15!

where we have abbreviatedEbb asEb .

The Hamiltonian describing the processes~2! is con-
structed as a sum of local Hamiltonians acting on adjac
sites

H5(
x

h~x,x11!, ~16!

where the operatorh(x,x11) means that the operatorh acts
only nontrivially on sitesx andx11. The operatorh is con-
structed from local operators as follows, where we will u
hereafter the Einstein summation convention over Greek
dices

h5Rab
mn~Ema ^ Enb2Ea ^ Eb!. ~17!

The conservation of probability constrains the rates to sat
the relation

(
m,n

Ra,b
m,n50 ;a,b. ~18!

Finally we need two matrices constructed from the matrix
rates which will prove useful later, and we prefer to intr
duce them here for convenience. Out of the matrix of ra
we form a set of matricesRi andSi defined as follows:

~Ri !a,bª(
n

Rab
in , ~19!

~Si !a,bª(
n

Rab
n i . ~20!

The conditions for decoupling of equations will be express
in terms of these matrices.
4-3
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III. DECOUPLING OF CORRELATION FUNCTIONS

The simplest correlation functions are one-point functio
which determine the average densities of particles of e
type at each site. Thus we are interested in the equatio
motion of the one-point function̂ni(x)&ª^dt(x),i&. This is
in fact the probability that sitex is occupied with a particle o
type i. In the operator formalism this one-point function
written as a matrix element of the corresponding opera
namely,

^ni~x,t !&5^SuEi~x!uP~ t !&5:^Ei~x!&, ~21!

where by the last equality we have defined the bracket or
average of an operator. From Eq.~8!, we find

d

dt
^ni~x!&5^@Ei~x!,H#&

5^@Ei~x!,h~x21,x!#&1^@Ei~x!,h~x,x11!#&.

~22!

Each of these two terms leads in general to two-point fu
tions on their relevant sites, the first term on (x21,x) and the
second on (x,x11). We now ask under what condition
cancellation occurs ineachof these termsseparatelyso that
we end up with only one-point functions on the right ha
site. A little reflection on the words written in italic show
that the question we are asking and henceforth its ans
does not depend at all on the underlying lattice and the ra
of the interaction, in so far as we are only considering Ham
tonians with two-body interactions. To find the answer to o
question we calculate one of these terms say the second
We note that

^Su@Ei~x!,h~x,x11!#5Rab
m,n^Su@Eii ~x!,Ema~x!Enb~x11!#,

~23!

where we have ignored the diagonal part ofh(x,x11) which
obviously commute withEii (x). Using the commutation re
lations ~14! and also the property~15! we find

^Su@Eii ~x!,h~x,x11!#5(
n

Rab
in ^SuEa~x!Eb~x11!

2(
m,n

Rib
mn^SuEi~x!Eb~x11!.

~24!

The second term vanishes in view of Eq.~18! and we are left
with

^Su@Eii ,h~x,x11!#5~Ri !a,b^SuEa~x!Eb~x11!. ~25!

Expanding the right hand terms we find
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^Su@Eii ,h~x,x11!#5Ri
0,0̂ SuE0~x!E0~x11!

1Ri
j ,0̂ SuEj~x!E0~x11!

1Ri
0,k^SuE0~x!Ek~x11!

1Ri
j ,k^SuEj~x!Ek~x11!, ~26!

where now we are using the summation convention on La
indices andRi

j ,k stands for (Ri) j ,k . We now use the operato
identity

E0512E12E22•••Ep , ~27!

and eliminate the operatorsE0(x) andE0(x11) on the right
hand side of the above equation and demand that all
quadratic terms vanish. It is easily seen that this cancella
occurs when the matricesRi satisfy the relations,

Ri
j ,k5Ri

0,k1Ri
j ,02Ri

0,0 ; i , j ,k. ~28!

This simply means that for each matrixRi , all the elements
are fixed once the elements of the first row and column
determined.

Similar calculations for the first term of Eq.~22! leads to
the following condition:

Si
j ,k5Si

0,k1Si
j ,02Si

0,0 ; i , j ,k, ~29!

where the matricesSi have already been defined in Eq.~19!.
Multiplying both sides of Eq.~26! by uP(t)& it is seen that

once the above conditions are satisfied, the equations of
tion of 1-point functions depend only on one point function
A short calculation shows that once the equations of mot
for one point functions are closed, it guarantees that
equation of higher-order correlation functions are a
closed, that is their equation of motion depend solely on
k-point functions withk<n. In this way the hierarchy of
equations ofn-point functions is terminated and closed
any level and the system amends itself to exact analyt
treatment. Every model whose rates satisfy the relations~28!
and ~29! is solvable in the above sense.

Moreover we show that the equations of motion of tw
point functions at different times are also closed under
above conditions. In some models like voting models@27#
the calculation of such correlation functions are importan

To see this consider the two-pointtwo time correlation
function ^ni(x,t)nj (x8,0)&. We have

d

dt
^ni~x,t !nj~x8,0!&[^Sue2tH@Eii ~x!,H#etHEj j ~x8!uP~0!&

~30!

[^Su@Eii ~x!,H#etHEj j ~x8!uP~0!&.
~31!

Under the conditions~28! and ~29!, we know that the com-
mutator in the above equation is expressible as the sum
local site operators. Restoring the operatore2tH, i.e., ^Su
→^Sue2tH, we find that on the right hand side of this equ
4-4
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GENERAL REACTION-DIFFUSION PROCESSES WITH . . . PHYSICAL REVIEW E66, 041114 ~2002!
tion only two-point functions appear. Therefore, the equat
of motion of two-time two-point functions will also be
closed.

A. Remarks

~1! The emergence of two sets of constraint for the ra
does have nothing to do with a given sitex, having two
neighborsx21 andx11 and hence on the underlying la
tice. On a general lattice we still have only these two eq
tions. It only reflects the fact that the interaction Hamilt
nians defined on each link may not be symmetric under
interchange of its ends. Therefore each sitex contributes to
two types of interaction Hamiltonians, namely, those of
type h(x,y) which for all differenty’s lead to Eq.~28! and
those of the typeh(z,x) which for all differentz’s lead to Eq.
~29!. In fact for symmetric models in which there is no dri
ing force one expects that these two sets of constraint
come identical. This is in fact the case, since for these s
metric models, one hasRab

mn5Rba
nm and henceRi

a,b5Si
b,a ,

which makes the two set of conditions identical.
~2! For general models the number of independent rate

(p11)42(p11)2. To count the number of conditions o
the rates we note that a matrix such asR1 imposesp2 linear
equations on the rates, since its first row and column de
mine all the other elements. There are 2p such matrices and
hence the number of conditions is 2p3. Therefore the num-
ber of parameters of the solvable family we are consider
is Np5(p11)42(p11)222p3. For the one species cas
we find N15162422510. For the two- and three-specie
models we have 56 and 186 free parameters, respective

~3! It appears that the family of integrable multispeci
models live on a manifold of huge dimension and one is
complete ease to choose many models of his own choice
adapting them to any physical situation. However, this is
illusion and as we will see, in choosing physically interesti
models from this manifold, one is much more restricted th
it appears at first sight. The reason is that we are usu
interested in simple subclasses of these models, one
which we can set many of the irrelevant or uninterest
parameters equal to zero either on physical grounds o
make our analysis simple and transparent. However, it o
happens that once we set some of these parameters eq
zero, the set of admissible parameters collapses drastical
that we are left with totally uninteresting models or mod
which are actually equivalent to one-species models. G
metrically the constraints are a set of hyperplanes which p
through the origin. The admissible rates lie in the intersect
of all these hyperplanes. However, all the rates are also
strained to be positive. It may happen that this intersectio
hyperplanes, although a manifold of high dimension, m
intersect the positive sector of the space of parameters
very low-dimensional submanifold. As an example consi
a model with say six ratesr 1 , r 2 , r 3 , r 4 ,r 5, andr 6 and one
constraintr 11r 21r 31r 41r 52r 650. The set of admissible
rates is obviously a five-dimensional plane. However, if
some reason we are interested in those models in which
rate r 6 is vanishing, then we are left with the constraintr 1
1r 21r 31r 41r 550 that forces all these remaining param
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eters to vanish. In the multispecies case this difficulty sho
up more severely, since we are dealing with a large num
of hyperplanes. Thus it is nontrivial to find physically inte
esting multispecies models in the class discussed above

We will conclude this section with the final form of th
equation of motion of one-point functions. Collecting th
remaining linear terms in Eq.~26! and its counterpart, we
find ~with summation convention understood for Latin ind
ces!

d

dt
^ni~x!&5Ri

0,0̂ n0~x!1n0~x11!21&1Ri
j ,0̂ nj~x!&

1Ri
0,j^nj~x11!&1~x→x21,R→S!. ~32!

This equation is specific to a one-dimensional lattice. In
general lattice it should be modified appropriately, the mo
fication is, however, straightforward~see Sec. IV!. Before
going to the consideration of a two-species model, it is
structive to recapitulate the findings for the one-spec
model from this general perspective.

B. The one-species separable models

If there is only one species of particles on the lattice,
have only two matrices, namely,R1 and S1. These are two
by two matrices, subject to the conditions:

R1
1,11R1

0,05R1
1,01R1

0,1, ~33!

S1
1,11S1

0,05S1
1,01S1

0,1. ~34!

When expanded by using the definition~28! and ~29! of the
matricesR1 andS1, they yield:

R11
101R11

111R00
101R00

115R01
101R01

111R10
101R10

11, ~35!

R11
011R11

111R00
011R00

115R01
011R01

111R10
011R10

11. ~36!

One can now eliminate the diagonal terms from normali
tion to transform the above relations to

R10
001R10

011R00
101R00

115R01
101R01

111R11
001R11

01, ~37!

R01
001R01

101R00
011R00

115R11
001R11

101R10
011R10

11, ~38!

which are the relations given in Ref.@21#. In the following
section we will consider a two-species model.

IV. A TWO-SPECIES SEPARABLE MODEL

As mentioned above the rates of the solvable two-spe
models of the type considered in this paper live on a
dimensional hyperplane. By exploring various regions of t
plane, one can find interesting two-species models suita
for various applications. In this section we explore a sm
region of this plane by imposing extra symmetry requi
ments on the model.

We consider systems in which there is no driving forc
i.e., systems which have the symmetryRa,b

m,n5Rb,a
n,m . As

noted above@see Eqs.~28! and~29!#, for these models theR
matrices and theS matrices lead to identical constraints. Fu
thermore, we restrict ourselves to those models in which
individual species is neither created nor annihilated but o
4-5
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changes its label. Such models may be appropriate
description of voting processes or the spreading of epid
ics. This means that we are settingR0,0

i ,05Ri ,0
0,05Ri , j

k,05Ri ,0
j ,k

50. In other words the number of Latin indices should
equal as subscripts and superscripts ofR. A rate such asR1,0

2,0

means that a voter with vote 1 spontaneously~or due to the
effect of environment! changes his or her vote to vote 2~or
a healthy individual 1 gets infected due to the interact
with the environment!. In a time intervaldt two voters with
different votes 1 and 2, pass each other, without chang
their votes, with probabilityR12

21dt. It may also happen tha
on this close contact the voter 1 changes his or her idea
switch to vote 2. This will happen with probabilityR12

22dt.
Note that the voting processes that have been studied in
literature contain only two species1 and2 with no vacant
site. Here we have also vacant sites, and the voters can m
in free space and interact with each other. Equations~28!
now yields:

R10
101R01

105R11
111R11

12, R10
201R01

205R11
211R11

22, ~39!

R10
101R02

105R12
111R12

12, R10
201R02

205R12
211R12

22, ~40!

R20
101R01

105R21
111R21

12, R20
201R01

205R21
211R21

22, ~41!

R20
101R02

105R22
111R22

12, R20
201R02

205R22
211R22

22. ~42!

The diagonal terms likeR10
10,R20

20
••• are a source of trouble

since they are minus the sum of a number of rates and
would better get rid of them. To do so we proceed as follow
We note that in each pair of equations above, the sum of
right hand side terms adds up to zero, due to normalizat
Thus the sum of the left hand sides must also add up to z
If we do so and substitute for the diagonal terms their va
from the normalization @i.e., substitute R10

10 with
2(R10

011R10
021R10

20)], we find that the first and the last pair o
equations of the above set lead to trivial identities. We a
find that the second and the third pairs lead to one sin
identity, meaning that in each pair one is redundant. Thus
keep this last identity and safely ignore all the equatio
which contain diagonal terms. Therefore, we are actu
dealing with five independent equations relating posit
rates, the final forms of which are

R10
201R10

025R11
211R11

22, R20
101R20

015R22
121R22

11, ~43!

R10
201R02

205R12
211R12

22, R20
101R01

105R21
121R21

11, ~44!

R01
101R01

205R02
201R02

10. ~45!

These are the final conditions on the rates for this kind
two-species model.

Equations of motion

To obtain the equations of motion for the above two s
cies model, we use Eq.~32! and obtain for ad-dimensional
rectangular lattice with unit vectorser ;r 51, . . .d, and with
the abbreviation̂ni(x)&→ni(x):
04111
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d

dt
n1~x!5R01

10¹2n1~x!22d~R01
021R01

20!n1~x!1R02
10¹2n2~x!

12d~R02
011R02

10!n2~x!, ~46!

and

d

dt
n2~x!5R02

20¹2n2~x!22d~R02
011R02

10!n2~x!1R01
20¹2n1~x!

12d~R01
021R01

20!n1~x!, ~47!

where¹2n(x)ª„( r 51
r 5dn(x1er)1n(x2er)22dn(x)… stands

for the discreted-dimensional Laplacian.
All the terms in these equations can be understood in

itively. For example, a term likeR02
10¹2n2(x) measures the

diffusion of particles of type 2 which change their type
color to 1 as they hop.

If one begins to write the equations intuitively taking a
the complex interactions into account, one finds many ot
terms. But at the end they all cancel out. For the descrip
of the solution, it is convenient to define new parameters

g1ª2d~R01
201R01

02!, g252d~R02
101R02

01!, ~48!

gªg11g2 , ~49!

DªR01
101R01

205R02
201R02

10[1, ~50!

D8ªR01
102R02

105R02
202R01

20, ~51!

where we have used the last relation of Eq.~43! in the last
two relations and have rescaled time to setD51. These
parameters have obvious physical interpretations,g1 andg2,
respectively, determine the overall tendency of particles
type 1 and 2 to switch their types.D is the diffusion constant
of the particles when we ignore their types and finallyD8 a
kind of relative diffusion constant. It measures the differen
of diffusion constant for the particles that do not change th
type in hopping, compared with those which do so.

Solving these coupled system of differential-differen
equations will give the distribution of both types of particl
in space and time. In principle it is possible to go to Four
space and diagonalize the resulting matrix equation. Ho
ever, it is better to proceed in a more physically transpar
way by defining new densities:

n~x!5n1~x!1n2~x!, ~52!

f~x!5g1n1~x!2g2n2~x!. ~53!

Here n(x) is the total density of particles~when we ignore
their types or colors! and f(x) is a weighted difference o
densities.

It is now a matter of simple algebra to use Eq.~48! to
arrive at the following equations for these new densities:

]

]t
n~x!5¹2n~x!, ~54!
4-6
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which means that if we ignore the color of particles, th
perform simple diffusion with diffusion constantD. We also
obtain

]

]t
f~x!5D8¹2f~x!1D9¹2n~x!2gf~x!, ~55!

where

D9ªR02
10g12R01

20g2[R02
10R01

022R01
20R02

01. ~56!

The total number of particles of each species obey v
simple equations which are obtained by summing the ab
equations overx. Denoting the number of particles of sp
cies 1 and 2 byN1 andN2 respectively, and noting thatN2
5N2N1, whereN is the total number of particles, we fin
from Eq. ~55! by summingf over all the sites:

d

dt
N152g1N11g2N252g1N11g2~N2N1!, ~57!

the solution of which is

N1~ t !5
g2

g11g2
N1e2(g11g2)tS N1~0!2

g2

g11g2
ND ,

~58!

N2~ t !5
g1

g11g2
N1e2(g11g2)tS N2~0!2

g1

g11g2
ND .

~59!

We now discuss the solution of Eqs.~54! and ~55! which
determine the spatial distribution of particles in time.

Let us define the Fourier transforms

n̄~q,t !ª(
x

eiq•xn~x!, f̄~q,t !ª(
x

eiq•xf~x!, ~60!

where q5(q1 ,q2 , . . .qd) and for all i, qiP@0,2p), from
which we find:

n~x!5E
0

2p

e2 iq•xn̄~q,t !
dq

~2p!d

f~x!5E
0

2p

e2 iq•xf̄~q,t !
dq

~2p!d
. ~61!

With the definition

Q52(
r 51

r 5d

~cosqr21!, ~62!

we find the equations of motion for these generating fu
tions as

ṅ̄5Qn̄, ~63!

ḟ̄5Q~D8f̄1D9n̄!2gf̄, ~64!
04111
y
e

-

with the general solution

n̄~q,t !5n̄~q,0!eQt, ~65!

f̄~q,t !5e(QD82g)tF f̄~q,0!2
QD9

Q~12D8!1g
n̄~q,0!G

1eQtF QD9

Q~12D8!1g
n̄~q,0!G . ~66!

Once the initial distributions of particles of each type
known, these equations allow us to determine the distri
tions of both types of particles in later times. If the particl
are in a finite volume, then the above solutions are still va
except that the momentaq will take discrete values.

The large scale behavior of these densities is determ
by going to the limit ofq→0, whereQ→2uqu2. For illus-
tration we consider two simple examples.

Example 1. Let us assume that the particles~voters!
change their type~votes! only on encounter with other par
ticles ~voters!. In this case we have:R10

205R10
025R20

105R20
01

50. From Eq.~43! we find that the only nonzero paramete
which remain areR12

215:P,R12
225R12

115:A and R10
015R20

02

5:D, subject to a relation:D5P1A, where we have intro-
duced new simple labels for the rates. The labelsD,P, andA
stand, respectively, for ‘‘diffusion,’’ ‘‘pass’’ and ‘‘agree-
ment’’:

1 0↔0 1 with rate D, ~67!

2 0↔0 2 with rate D, ~68!

1 2↔2 1 with rate P, ~69!

1 2→2 2 with rate A, ~70!

1 2→1 1 with rate A. ~71!

In this case we find from Eqs.~46! and ~47! that both types
of particles diffuse through each other without any intera
tion

]

]t
n1~x!5D¹2n1~x!,

]

]t
n2~x!5D¹2n2~x!. ~72!

However, this is peculiar to one-point functions and t
equations of two-point functions will indeed be coupled
each other by interaction parameters. This is an exampl
an observation first made in Ref.@32# according to which
some Hamiltonians may lead to the same set of equations
one-point functions. Here our Hamiltonian is equivalent to
free Hamiltonian as far as the one-point functions are c
cerned.

Example 2. Let us now assume that one of the particl
say type 1 does not change its type, or one kind of voter
persistent in his vote, that is,R10

205R10
0250. The first equation

of ~43! then leads toR11
215R11

2250. In this case we find from
4-7
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Eq. ~48! thatD950 andD851. The relations~43! reduce to
the following relations between the remaining rates of re
tions:

R02
205R12

211R12
22, ~73!

R01
105R02

201R02
10, ~74!

R20
101R01

105R21
121R21

11, ~75!

R20
101R20

015R22
121R22

11. ~76!

For simplicity we first consider the large scale form of t
distribution functions. From Eq.~65! we obtain

n̄~q,t !5n̄~q,0!e2uqu2t, ~77!

f̄~q,t !5f̄~q,0!e(2uqu22g)t. ~78!

Let us consider a situation at timet50 where there areN2
particles of type 2 at the origin, i.e.,n2(x,0)5N2d(x) in a
uniform set of particles of type 1 of densityr, i.e.,
n1(x,0)5r. Thus the initial values of Fourier transforms a

n̄1~q,0!5r~2p!dd~q! n̄2~q,0!5N2 , ~79!

or

n̄~q,0!5N21r~2p!dd~q! f̄~q,0!52g2N2 . ~80!

Inserting these into Eq.~77!, we find

n̄~q,t !5@N21r~2p!dd~q!#e2uqu2t

[N2e2uqu2t1r~2p!dd~q!, ~81!

f̄~q,t !52g2N2e2(g21uqu2)t. ~82!

Taking the inverse Fourier transform and using the definit
~52! we find

n1~x,t !5r1
N2

~4pt !d/2
e2uxu2/4t~12e2g2t!, ~83!

n2~x,t !5
N2

~4pt !d/2
e2uxu2/4te2g2t. ~84!

~85!

The initial number of particles of type 2 diffuse and grad
ally the particles of type 2 turn into type 1. At the end,
particle of type 2 remains.

We can also consider the small scale behavior of th
distributions. In this case the solution of the Eqs.~63! is
given by modified Bessel functions. We give below the s
lution for the initial distribution of one particle of type
04111
-

n

-

e

-

2 at the origin and a uniform distribution of particles
type 1 at all other sites except the origin. That

@n2(x,0)5dx,0 or n̄2(q,0)51] and @n1(x)5r(12dx,0) or,
(n̄1(q,0)5r((2p)dd(q)21#. For these initial conditions we
can findn̄(q̄,t) and f̄(q,t) from Eq. ~65!. The result is

n̄~q,t !5~12r!eQt1~2p!drd~q!, ~86!

f̄~q,t !52g2e2(Q2g2)t. ~87!

On the lattice we will find

n~x,t !5r1~12r!
1

~2p!dE0

2p

eQt2 iq•xdq, ~88!

f~x,t !52g2e2g2t
1

~2p!dE0

2p

eQt2 iq•xdq. ~89!

These integrals can be written in terms of modified Bes
functionsI x(t)51/2p*0

2pe2 iqx1cosqtdq. Thus we find

n1~x,t !5r1~12r2e2g2t!e22dt)
x

I x~2t !, ~90!

n2~x,t !5e2g2te22dt)
x

I x~2t !. ~91!

V. DISCUSSION

We have obtained the general condition under which
hierarchy of equations forn-point functions of a multispecies
reaction-diffusion system truncates at all orders, that is
equations of motion ofn-point functions depend only on
those of lower correlation functions. Also under the abo
conditions the equations of motion of two-point functions
different times form a closed system. We have selected o
class of 2 species models which may be appropriate for
description of the spread of an epidemic or as a voter mo
This work can be extended in several directions, even if o
restricts oneself to the two-species models. First, one
study other two species models which include coagulati
decoagulation or birth and death processes. Second, in
two-species model one can change our interpretation o
particle as a hole and take it to be a real particle. In this w
one can adapt the rates for description of other mod
Third, one can study also the asymmetric models and re
our simplifying assumption on the symmetry of rates, a
finally one can consider the similarity transformation@28–
31# on the model to obtain the other exactly solvable mode

Note added in proof.After the original version of this
paper was submitted I was informed by one of the author
Ref. @32# that Eqs.~28! and~29! have already been obtaine
by these authors. Their considerations, however, are
stricted to one dimensional lattices and to equal time co
lation functions.
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