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We consider general multispecies models of reaction diffusion processes and obtain a set of constraints on
the rates which give rise to closed systems of equations for correlation functions. Our results are valid in any
dimension and on any type of lattice. We also show that under these conditions the evolution equations for two
point functions at different times are also closed. As an example we introduce a class of two species models
that may be useful for the description of voting processes or the spreading of epidemics.
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[. INTRODUCTION in general higher correlation functions. One can truncate the
hierarchy at a level by various kinds of approximations, the
An interesting class of nonequilibrium problems with a Simplest and the most common method is to break the hier-
rich dynamical behavior and a vast area for applications ar@rchy at the first level by the mean field approximation.
stochastic reaction-diffusion systerfsee[1—4] and refer- However, in some models and in low space dimensions, the
ences therein These are the processes in which one or sevamount of diffusive mixing may not be enough to warrant
eral species of particles hop randomly on a lattice, and intersuch an approximation. Some of these models may also have
act in various possible ways with each other. In the ondong relaxation times so that their simulation may be difficult
species case, it is convenient to denote a particle by the syngnd time consuming. For these models exact solutions are
bol 1 and a vacant sitéa hole by the symbol 0. Then a highly desirable.
Simp|e hopp|ng is represented by|-D_>0+ 1. In addition Interestingly enough, there are models in which the hier-
to exclusion which means that no two particles can occupy &'chy of equations of correlation functions automatically
single site, the possible interactions include pair creatiorPreaks at every level, hence the possibility of obtaining exact
(0+0—1+1), pair annihilation (#1—0+0), coagula- solutions. For these models the equations of motion of
tion (1+1—1+0), decoagulation, (81—1+1), birth n-point functions depend only ok-point functions withk
(0—1) and death (1-0) processes. Obviously the variety <n. _We should stress that_ while a ppwerful t_echnique like
of elementary processes rapidly increases with the number @atrix product ansatz or its dynamical versiptb] only
species. transform the problem to another equally difficult and yet
In general, such lattice systems are difficult to treat byconvenient problem, that is, finding the representations and
rigorous analytical means and correspondingly, considerin§alculating matrix elements of strings of operators of an al-
the vast amount of such models, relatively few exact result§ebra[13,16,11, for these models the simplification appears
are known. to be genuinely effective. Moreover this property is indepen-
Over the past few years the application of operator fordent of the dimension and the geometry of the lattice. In
malism to these stochastic processes and their mapping ¥ew of its generality this is a great simplification and de-
quantum spin systems and their generalizations has turned §§'ves to be pursued further from various directions.
be quite fruitful. In view of this correspondence, many of the ~ The observation of this phenomenon in some models like
techniques of quantum spin systems such as free fermiopymmetric exclusion and partial exclusion proceqge$8—
techniques, Bethe ansatz and related algebraic techniqué8l led G. M. Schite [21] to raise the question of classifica-
[5—11], have been used in the investigation of reaction-tion of such models, i.e., a general criterion on the reaction
diffusion systems, specially in one-dimensional lattice sys2and diffusion rates such that the resulting equations for the
tems. Also by using the operator formalism, some of the olcForrelation functions decouple. By considering the one spe-
techniques such as the matrix product anga2% have been Cies processes and the particle density correlation functions
put to very fruitful use, in solution of one-dimensional sto- (N(x)), he found that from among the 12-parameter family
chastic systemg13] (see Refs.[1,2,14 and references Of single species reaction diffusion systems, a 10-parameter
therein). Almost all of the above methods have one limita- family fall within this class.
tion, they are restricted to one-dimensional lattices, specially Since then this question has been pursued further. For
if we are interested in exact solutions. example, one can consider the hole-density correlation func-
A common feature of any model of interacting particlestions (1—n(x)) (the so called empty interval methodith
and indeed the main source of difficulty in obtaining exacttwo [23,24 or three site interaction225] or even more gen-
solutions is that the equations of motion of correlation func-eral functions like(a+bn(x)) [22,23,28. These correlation
tions form an infinite hierarchy, that is, the equation of mo-functions lead to different sets of constraints on the rates.

tion of n-point functions includer{+ 1)-point functions and )
The aim and the results of the paper

The aim of the present paper is to investigate this question
*Email address: vahid@sharif.edu for the general multispecies case. That is, we assume that
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there are p+1 species of particles labeled as typealso work explicitly with nearest neighbor interactions, al-
0,1,2 ...p which hop and interact in a lattice of arbitrary though again our results are valid for arbitrary range of
geometry. We interpret particles of type 0 as holes and othdnteractions. These facts have already been shown in Ref.
particles as real particles. We assume two body interaction@1] and are also easily verified by reviewing our method of
between the particles, and obtain the general condition on throof, in the sense that no part of the reasoning depends on
rates, so that the correlation functions of densities of real€ underlying lattice or the range of interactions.

particles, i.e., particles of type 1,2. .p decouple from the We denote the points of the lattice by Latlln' Ietter§ from
correlation functions of higher levels in the hierarchy. Wethe end of the alphabet—1x,x+1,.... In afinite lattice

show that under this condition the equation of motion of V& numberthe sd|tes frO”.‘ L1 To Eachh Sitex OLthilftt'Cle’
two-time two-point correlation functions are also closed. W€ assign a random variabigx) which can takep val-

These types of correlation functions are important in the/€S 0.1, - . p. We denote the values of this random variable

analysis of voting process¢27]. when it takes all the values including pc_)ssibly the value 0,
In view of the arbitrary number of species in our model, by Greek lettersa, B, . . ., a_ndwhen it takes onl_y the
one will have much more freedom to find an exactly solvable’@lues different from 0, by Latin letters, from the middle of
model for description of physical phenomena, specially int€ alphabet, liké,j,k,I-. Thus(ni(x)):=(J,y.;) denotes

the area of chemical kinetics, where one usually has morf'€ average density of particles of typeat sitex, or the

than one species of particles. probability of sitex being occupied by a pgrtlcle of pret
Since in our analysis and hence in our results, there is af"d (Mo(X))=(8:(,0) denotes the probability of this site

asymmetry between a particle of type 0 and other particles, R€INg €mpty. It thus follows that

is important to keep in mind that the interpretation of particle P

0 as a hole is not essential. Therefore i_n ac_lapting a m(_)del E (n,(x)=1. (1)

from the class discussed below to a situation of physical a=0

interest, one can change this interpretation and take any other

particle of type 1,2...p to stand for a hole and particle 0 We assume that the two particles of typeand g on two

for a real particle. adjacent sites may transform stochastically to particles of
For generap-species models, the number of independentype x and v with rate R}, . This is written as

rates is p+1)*— (p+1)2. We show that the family of ex- _

actly solvable models(in the above sengelive on an a,f—p,v withrate RY;. 2

Np-dimensional manifoldhyperplang whereN:=(p+ 1) . , ) .
—(p+1)2—2p®. For the one-species case we fiNg=16  Since a Greek index includes also the value 0, which we

—4—2=10, in accordance with the results of Sth{21]. interpret as a vacant site, the above transformations include

For the two- and three-species cases we have, respectivef}! the possible processes conceivigble for all types of par-
N,=56 and N;=186, where the number of independent ticles on the two sites. kFoor exampR3, is the hopping rate of
rates for these models are originally 72 and 240, respectively particle of type andRy, is the rate of creation of a particle
For an elaboration on this see the remark 3 in the text.  Of typek from the vacuum an&’ is the rate with which two
As an example and for concreteness we study a twoparticles of type andj interact or coagulate to form a par-
species family and further constrain it with certain extraticle of typek.
symmetries. In this class we can find models suitable for the We will use the operator formalism for Markov processes.
description of the spread of an epidemic, the exchange ofhis formalism is well known by now, since in the past few
ideas and votes, and the spreading of news or rumor. years it has been used extensively for the analysis of
We set up the solution of one-point functions for thesereaction-diffusion processes, specially in one dimension.
models and investigate to a certain extent the properties of In this formalism we should assign a complex+1)-
these solutions. dimensional Hilbert spac€P*! to each site, with ortho-
The structure of this paper is as follows: In Sec. Il we normal basis states
introduce our notations and conventions. In Sec. Il we ob-
tain the general conditions on the rates. In Sec. IV we con- 10),[1), ...1p), (ml¥)=6,,. 3
sider the cas@=2, and by imposing further symmetry re-

random variables of all sites7(1),7(2), ...7(L).
Such a configuration occurs with  probability
P(7(1),7(2), ...7(L);t)=(r(1),7(2), ...7(L)|P(t)).
Il. NOTATIONS AND CONVENTIONS The state vecto[P(t)) determines all the probabilities and
Throughout the paper we will adhere to notations whichits evolution is governed by a Hamiltonian derived from the
we will collect here for conveniencé&or ease of notations rates:
we will consider a one-dimensional lattice which may be
infinite or periodic. However, all our results are valid also on
lattices of arbitrary shape and arbitrary dimension. We will

paper with a discussion.

d J—
SiIP)=HIP). @
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For convenience we have absorbed the negative sign, whialihere we have use@Ble "*"=(S|.
is usually included in this equation, into the definition of the ~ Returning to our model, the local operatois, g
Hamiltonian. The probabilities are normalized by requiring :=|a)( 8| act on the states of a site &; glu)= 5 ,|a). Of
that particular  interest are the diagonal operators
Eoo,E11, - - -Epp Which act as number operators for the
_ holes, particles of type 1, to particles of typeHereafter we
7(1),72), . . .7(L) (r(1),7(2), .. 7(L)[P)=1. © abbreviate these diagonal operators and show them only by

one index instead of two, i.eE, stands foiE,,
This equation can be rewritten as

1 0
(SIP)=(s]*H{P)=1, © . .
where(s| is defined as Eo= 0 - Ep= 0
p 0 0
(s]:=2 (pl. (7) 0 1
n=0

13

Note that the Bra stat¢S| is the sum of all the possible The above operators have the commutation relations
configurations of the system.

From the master equatiof) and the propertyS|H=0 [Eap Eunl=05,Enn=0,0E 8- (14)
(as required by conservation of probabilitpne obtains the . .
Heisenberg-like equation of motion for the average of any. oreover _the following property of these operators is also
time independent observabl® important in the sequel:

d (S|Eap=(s|Egs=:(S|Ep., (15
E(O(t))=<8|[O,H]|P(t)), (8) where we have abbreviatéf};; asE.

The Hamiltonian describing the processgy is con-
ucted as a sum of local Hamiltonians acting on adjacent
sites

where O is an appropriately chosen operator whose matrixstr
element gives the average of the observable, i.e.,

(O(1))=(SIO|P(1)). ©) H=3 h(x,x+1), (16)

Note that the time dependence of the average comes from the

evolution of probabilities, therefore a better notation for the,,here the operatdn(x,x+ 1) means that the operatoracts
average of a time independent observable will(@(t).  only nontrivially on sitesc andx+ 1. The operatoh is con-
However, we use the notatiqiO(t)), since it will be con-  gircted from local operators as follows, where we will use

venient when we consider two point functions at unequahereafter the Einstein summation convention over Greek in-
times. Consider a completely general Markov system whosgijces

configurations are labeled iy and a time independent ob-

servableO of the configurations. We have h=RLA(E,.®E,;—E,®Ep). a7
The conservation of probability constrains the rates to satisfy
(O(t2)0(ty) = 2, O(C2)O(Cy)P(Cot2iCyt)- the relation
2:>1
(10)
o . . Ry =0 Va,B. (18)
In the operator formalism, it is easily shown that this two- wr

oint function is represented as . . .
P P Finally we need two matrices constructed from the matrix of

e A p 11 rates which will prove useful later, and we prefer to intro-
(O(t2)O(ty))=(S[O(t2) O(t1)|P(0)), (D juce them here for convenience. Out of the matrix of rates,

A A iceR i defi .
where O(t) is the Heisenberg-ike operatorO(t) W€ form a set of matriceR' andS' defined as follows:

:=e~"MOe'M. The above correspondence is also true for dif-

ferent kinds of operators. In particular we have, (R')aﬂ’zg Rlavﬁ' (19)
(O(1)0(0)):=(Sle"HOe™O|P(0)). We then have
d . . (S)ap=2 Rig- (20
31{O(0(0))=(S[O(t),H]O[P(0)) g
The conditions for decoupling of equations will be expressed
=(9|[O,H]e"O|P(0)), (12)  in terms of these matrices.
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Ill. DECOUPLING OF CORRELATION FUNCTIONS (SI[E;i ,h(x,x+1)]=Rio o S|Eo(X)Eg(x+1)
The simplest correlation functions are one-point functions +R o S|E (X)Eg(x+1)
which determine the average densities of particles of each _" !
type at each site. Thus we are interested in the equation of +R'ok(S|Eo(X)Ex(x+1)

motion of the one-point functioin;(x)):=(&,(x,i). This is

in fact the probability that sit® is occupied with a particle of

typei. In the operator formalism this one-point function is . . . .

written as a matrix element of the corresponding operato Yvhgre now V\i’e are using thei summation convention on Latin

namely, !gglrﬁif, andR';  stands for R'); . We now use the operator
i

(ni(x,1))=(SEi()[P(t))=:(Ei(x)), (21 Eo=1-E;—E,—---E,, 27)

+R' (SIEj(X)Ex(x+1), (26)

where by the last equality we have defined the bracket or thand eliminate the operatoEg(x) andEq(x+1) on the right
average of an operator. From E@), we find hand side of the above equation and demand that all the

quadratic terms vanish. It is easily seen that this cancellation
occurs when the matrica®' satisfy the relations,

d
Mo ={E)HD R =Rl + R o~ Rloo  Vi,j k. (28)

=([Ei(x),h(x=1x)]) +([Ei(x),h(x,x+1)]). This simply means that for each mati®, all the elements
(22 are fixed once the elements of the first row and column are
determined.

Each of these two terms leads in general to two-point func- Similar calculations for the first term of E2) leads to
tions on their relevant sites, the first term on{(1x) and the  the following condition:

second on X,x+1). We now ask under what condition a . . . 4 .

cancellation occurs ieachof these termseparatelyso that Sjk=SoktSj0~So0 Vi.jk (29)

we end up with only one-point functions on the right hand o _ )

site. A little reflection on the words written in italic shows Where the matriceS' have already been defined in Eg9).

that the question we are asking and henceforth its answer, Multiplying both sides of Eq(26) by [P(t)) it is seen that
does not depend at all on the underlying lattice and the rang@"ce the above conditions are satisfied, the equations of mo-
of the interaction, in so far as we are only considering Hamil-tion of 1-point functions depend only on one point functions.
tonians with two-body interactions. To find the answer to our® Short calculation shows that once the equations of motion

question we calculate one of these terms say the second orf@ One point functions are closed, it guarantees that the
We note that equation of higher-order correlation functions are also

closed, that is their equation of motion depend solely on the
) k-point functions withk=n. In this way the hierarchy of
(SILEi (), h(x,x+1)]=REF(SILEii (X), E o Ep(x+1)], equations ofn-point functions is terminated and closed at
(23 any level and the system amends itself to exact analytical
treatment. Every model whose rates satisfy the relati@@s
where we have ignored the diagonal parh¢k,x+ 1) which  and(29) is solvable in the above sense.
obviously commute wittg;;(x). Using the commutation re- Moreover we show that the equations of motion of two-
lations (14) and also the propertyl5) we find point functions at different times are also closed under the
above conditions. In some models like voting mod&l3]
' the calculation of such correlation functions are important.
(S[Eii(x),h(x,x+1)]=>, Ry s(SIEa(X)Eg(x+1) To see this consider the two-poitwo time correlation
v function (n;(x,t)n;(x’,0)). We have

— > REY(S|E{(X)E 4(x+1). d B
22 RSIB00BA X+ e (MOGDN (< ,0)=(Sle " [E;i (), H1eME (x)|P(0))
(29 (30

The second term vanishes in view of Efj8) and we are left =(S|[Eii(x),H]e"E;;(x")|P(0)). a1
with 31

Under the condition$28) and (29), we know that the com-
mutator in the above equation is expressible as the sum of
local site operators. Restoring the operagor™, i.e., (S
Expanding the right hand terms we find —(Sle™™, we find that on the right hand side of this equa-

<S|[EII !h(X1X+ 1)] = (Ri)a,,B<S| Ea(x) EB(X+ 1) (25)
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tion only two-point functions appear. Therefore, the equatioreters to vanish. In the multispecies case this difficulty shows
of motion of two-time two-point functions will also be up more severely, since we are dealing with a large number
closed. of hyperplanes. Thus it is nontrivial to find physically inter-
esting multispecies models in the class discussed above.
We will conclude this section with the final form of the
A. Remarks equation of motion of one-point functions. Collecting the

(1) The emergence of two sets of constraint for the rategemaining linear terms in E¢26) and its counterpart, we
does have nothing to do with a given site having two find (with summation convention understood for Latin indi-

neighborsx—1 andx+1 and hence on the underlying lat- ces

tice. On a general lattice we still have only these two equa-

tions. It only reflects the fact that the interaction Hamilto- a(ni(x»:Riolo(no(x)+no(x+ 1)—1)+Rij,0<nj(x)>

nians defined on each link may not be symmetric under the

interchange of its ends. Therefore each siteontributes to + Ri0j<nj(x+ 1))+ (x—x—1R—9). (32

two types of interaction Hamiltonians, namely, those of the ’

type h(x,y) which for all differenty’s lead to Eq.(28) and  This equation is specific to a one-dimensional lattice. In a
those of the typé(z,x) which for all differentz’s lead to Eq. ~ general lattice it should be modified appropriately, the modi-
(29). In fact for symmetric models in which there is no driv- fication is, however, straightforwartbee Sec. Y. Before
ing force one expects that these two sets of constraint begoing to the consideration of a two-species model, it is in-
come identical. This is in fact the case, since for these symstructive to recapitulate the findings for the one-species
metric models, one haR“%=R and henceR', ;=S ,,, ~ model from this general perspective.

which makes the two set of conditions identical.

(2) For general models the number of independent rates is
(p+1)*—(p+1)2 To count the number of conditions on If there is only one species of particles on the lattice, we
the rates we note that a matrix suchRisimposesp? linear  have only two matrices, namelR* and S'. These are two
equations on the rates, since its first row and column detelby two matrices, subject to the conditions:
mine all the other elements. There ane &uch matrices and L L N N
hence the number of conditions ip2 Therefore the num- R*11tR%0=R"10t R, (33
ber of parameters of the solvable family we are considering 1 1 ol 1
is N,=(p+1)*—(p+1)?—2p3. For the one species case S11tS00=S 10t Sou- (34)
we find N;=16—4-2=10. For the two- and three-species When expanded by using the definiti8) and (29) of the
models we have 56 and 186 free parameters, respectively. matricesR* and S, they yield:

(3) It appears that the family of integrable multispecies 10 11, 10 11 10 11, 10 11
models live on a manifold of huge dimension and one is at Ri1+ Rii+ Rogt Rgp= Roi+ Ror+ Rigt Rig, (39
complete ease to choose many models of his own choice for
adapting them to any physical situation. However, this is an Ri1+ Ri1+ Rog+ Roo=Ro1+ R+ Rig+ Rig.  (36)
illusion and as we will see, in choosing physically interestingn e can now eliminate the diagonal terms from normaliza-
models from th.|s manﬁold, one is much more restricted thanig, 1o transform the above relations to
it appears at first sight. The reason is that we are usually

B. The one-species separable models

interested in simple subclasses of these models, ones in R+ R+ R3O+ RE=RI+ R+ RY+RY, (37
which we can set many of the irrelevant or uninteresting 00 10 0L 11 00 10 01 11
parameters equal to zero either on physical grounds or to Roit Roi+ Root Roo=R11+ Ri1+Rigt Ry, (39

make our analysis simple and transparent. However, it often
happens that once we set some of these parameters equalv‘f
zero, the set of admissible parameters collapses drastically s&
that we are left with totally uninteresting models or models
which are actually equivalent to one-species models. Geo-
metrically the constraints are a set of hyperplanes which pass As mentioned above the rates of the solvable two-species
through the origin. The admissible rates lie in the intersectiomodels of the type considered in this paper live on a 56-
of all these hyperplanes. However, all the rates are also corimensional hyperplane. By exploring various regions of this
strained to be positive. It may happen that this intersection oplane, one can find interesting two-species models suitable
hyperplanes, although a manifold of high dimension, mayfor various applications. In this section we explore a small
intersect the positive sector of the space of parameters in gion of this plane by imposing extra symmetry require-
very low-dimensional submanifold. As an example consideiments on the model.

a model with say six rates, r,, s, r4,r's, andrg and one We consider systems in which there is no driving force,
constraint y+r,+r3+rs+rs—rg=0. The set of admissible i.e., systems which have the symmetRf ;=Ry% . As
rates is obviously a five-dimensional plane. However, if fornoted abovésee Eqs(28) and(29)], for these models thR
some reason we are interested in those models in which th@atrices and th& matrices lead to identical constraints. Fur-
raterg is vanishing, then we are left with the constraint  thermore, we restrict ourselves to those models in which an
+r,+r3+r,+r5=0 that forces all these remaining param- individual species is neither created nor annihilated but only

Bich are the relations given in RdR1]. In the following
ction we will consider a two-species model.

IV. ATWO-SPECIES SEPARABLE MODEL
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changes its label. Such models may be appropriate forg
description of voting processes or the spreading of e_pidemﬁnl(x)zRél 2n1(x) — 2d(R+ REDNL(X) + Rz n(X)
ics. This means that we are settig)=R’5=R{’=Rl§

=0. In other words the number of Latin indices should be +2d(R3+ REIN,(x), (46)
equal as subscripts and superscriptfRoh rate such aR'fjg

means that a voter with vote 1 spontaneousiydue to the and

effect of environmentchanges his or her vote to vote(@r

a healthy individual 1 gets infected due to the interaction _ p20u2 01, pl 20y 2

with the )énvironmem Inga time intervaldt two voters with gt "2 = Re2V " n2() = 2d(Roz Ro2)N2() + ReyV s (x)
different votes 1 and 2, pass each other, without changing
their votes, with probabilityR33dt. It may also happen that

on.thls close contact_the yoter 1 char!ges his or hegzldea anvgherevzn(x) ::(2{;‘fn(x+e,)+n(x—e,)—2dn(x)) stands
switch to vote 2. This will happen with probabilitRi5dt. . ! . .

i =~ . for the discreted-dimensional Laplacian.
Note that the voting processes that have been studied in the . ! .
. . . ) All the terms in these equations can be understood intu-
literature contain only two species and — with no vacant ifively. For example, a term k&.V2n,(x) measures the
site. Here we have also vacant sites, and the voters can molel: pie, 027 772 .

diffusion of particles of type 2 which change their type or

in free space and interact with each other. Equati
b quatiaes color to 1 as they hop.

now yields: . . . - .
y If one begins to write the equations intuitively taking all
RIS+ RY=RI+RY, R2+RI=RZ+RZ, (39 the complex interactions into account, one finds many other
terms. But at the end they all cancel out. For the description

R+ RI-RI+ R RO+ RO-—RZ+RZ  (40) of the solution, it is convenient to define new parameters:

+2d(RYT+RE)N1(X), (47)

- 20 02 — 10 01
RIG+RO=RIMHRE?, RI+RV=RL+RZ, (41) y1:=2d(Ry;+ Rp1),  72=2d(Rp;t Ry, (49
20 02 22 221 20 02 22 22"
._plo 20_ p20 10—
The diagonal terms lik&}S,R3- - - are a source of trouble, D :=Ro;*Ro1=Roz+ Roz=1, (50

since they are minus the sum of a number of rates and we ) 10 =10 =20 =20

would better get rid of them. To do so we proceed as follows: D":=Rg;~Ro2= Ro2— Ros. (51)

We note that in each pair of equations above, the sum of the . .

right hand side terms adds up to zero, due to normalizatiofVhere we have used the last relation of E4g) in the last
Thus the sum of the left hand sides must also add up to zerdV0 relations and have rescaled time to &et1. These

If we do so and substitute for the diagonal terms their valu?@rameters have obvious physical interpretatignsandy,,
from the normalization [i.e., substitute R%g with respectively, determme the overa]l tende.ncy- of particles of
_ (R%_l_ er)g+ ng)], we find that the first and the last pair of type 1 and 2 to switch their typeB.is the diffusion constant

equations of the above set lead to trivial identities. We als f the partlc_les vyhen_ we ignore their types and fmﬁ_)lya
find that the second and the third pairs lead to one sing| ind of relative diffusion constant. It measures the difference

identity, meaning that in each pair one is redundant. Thus ng diffusion constant for the particles that do not change their

keep this last identity and safely ignore all the equationstype |n_hopp|ng, compared with those Wh'Ch d9 SO-
which contain diagonal terms. Therefore, we are actually Sol'vmg thes_e couplgd fsyst'em of d|fferent|al-d|ffer_ence
dealing with five independent equations relating positive_equatlons will give the d_|str_|but|_or_1 of bOt.h types of partlclt_as
rates. the final forms of which are in space and time. In principle it is possible to go to Fourier
' space and diagonalize the resulting matrix equation. How-
ng 4 R%= Rﬂ + Rﬁ Rég + R%= R§§+ R%% (43) ever, it is better to proceed in a more physically transparent

way by defining new densities:

20, 20_ 21, p22 10, pl0_pl2, pll

RioT Ryz=R12tR12, Ryt Ry =R+ Rz, (44 N(X) = Ny(X) + Ny(X), (52)

10, p20_ 520, p10
Rot Roy=Roz+ Roz- 43 (0= 711(X) ~ ¥aNa(X). (59
mf_ze giz;hrﬁofél?l conditions on the rates for this kind OfHere n(x) is the total density of particleevhen we ignore
b ' their types or colorsand ¢(x) is a weighted difference of
) ) densities.
Equations of motion It is now a matter of simple algebra to use H48) to
To obtain the equations of motion for the above two spe-arrive at the following equations for these new densities:
cies model, we use E¢32) and obtain for al-dimensional
rectangular lattice with unit vectoes ;r=1, .. .d, and with ﬁ o2
the abbreviatior(n; (x))— 1 (x): "0 =Vn00, (54
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which means that if we ignore the color of particles, they with the general solution
perform simple diffusion with diffusion constabt. We also

obtain n(g,t)=n(q,0e?", (65)
i — A v4 "y 2 _ "
at PO)=DVEE(0+ DV ()~ y¢(), 59 g(q,t):e(QD,_Y){g(QvO)_Q(l—D’)+YF(q,O)
where
D" =Ry, REy, =RIRE-RERE. (50 M FrrerrweiCOlE ©9)

The total number of particles of each species obey very o o . )
simple equations which are obtained by summing the abovEnce the initial dISFI’IbUtIOHS of particles of each type is
equations ovex. Denoting the number of particles of spe- known, these equations allow us to determine the distribu-

cies 1 and 2 byN; andN, respectively, and noting thit,

=N-—N;, whereN is the total number of particles, we find

from Eq. (55 by summing¢ over all the sites:

d
le: — 71N+ ¥oNo=—¥1N1 + ¥2(N—=Ny), (57)

the solution of which is

Y2 Y2
N, (t)= N+e‘(71+72)t<N 0)— N),
1t Y1t Y2 1(0) Y1t Y2
(58
Y1 _ Y1
N,(t)= N+e Wﬁw)t(N 0)— N).
2(t Y1t Y2 2(0) Y1t Y2

We now discuss the solution of Eq&4) and (55) which
determine the spatial distribution of particles in time.

Let us define the Fourier transforms
n(g,) =2 €9N(x),  (q,t):=2 €I%p(x), (60)
X X

where g=(d;,92, . . .gq) and for alli, g;€[0,27), from

which we find:

tions of both types of particles in later times. If the particles
are in a finite volume, then the above solutions are still valid,
except that the momentawill take discrete values.

The large scale behavior of these densities is determined
by going to the limit ofq—0, whereQ— —|q|?. For illus-
tration we consider two simple examples.

Example 1 Let us assume that the particlégotery
change their typdvotes only on encounter with other par-
ticles (voters. In this case we haveR?3=R{5=R}%=R
=0. From Eq.(43) we find that the only nonzero parameters
which remain areR%=:P,R%=R}}=:A and R}=R%%
=:D, subject to a relatiorD =P+ A, where we have intro-
duced new simple labels for the rates. The lal®e|B, andA
stand, respectively, for “diffusion,” “pass” and “agree-

ment”:
1 0~0 1 withrate D, (67)
2 00 2 withrate D, (68)
1 22 1 withrate P, (69
1 2—2 2 withrate A, (70
1 2—1 1 withrate A. (71

In this case we find from Eq$46) and (47) that both types
of particles diffuse through each other without any interac-
tion

J
—ny(X)=DV2n,(x). (72

(X)=DV2ny(x), o

gt

However, this is peculiar to one-point functions and the
equations of two-point functions will indeed be coupled to
each other by interaction parameters. This is an example of
an observation first made in Rdf32] according to which
some Hamiltonians may lead to the same set of equations for
one-point functions. Here our Hamiltonian is equivalent to a

we find the equations of motion for these generating funCfree Hamiltonian as far as the one-point functions are con-

2m g dq
n(><)=f0 e ' n(q,t)(ZW)d
2 . . dq
— —ig-x
d(x) fo e ¢(q,t)(277)d- (61)
With the definition
r=d
Q:22l (cosq,—1), (62)
tions as
n=Qn, (63)
$=Q(D'¢+D"n)—y¢, (64)

cerned.

Example 2 Let us now assume that one of the particles
say type 1 does not change its type, or one kind of voters is
persistent in his vote, that iR39=R2=0. The first equation
of (43) then leads tdR7;=R%2=0. In this case we find from
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Eq.(48) thatD”"=0 andD'=1. The relationg43) reduce to 2 at the origin and a uniform distribution of particles of
the following relations between the remaining rates of reactype 1 at all other sites except the origin. That is

tions: [N5(x,0)= 3,0 O Ny(q,0)=1] and[ny(x)=p(1- 8,0 o,
(n1(9,0)=p((27)98(q) — 1]. For these initial conditions we
R20— R2l4 R22 (73) 2 Ay i
02~ 127 R, can findn(q,t) and ¢(q,t) from Eg. (65). The result is
RL9= R%1 RI, (74) n(g,t)=(1-p)e?+(2m)%(q), (86)
10, pl0_ pl2, pll d(q,t)=—ye (772, (87)
Raot Roi=R311 Ra1, (79

On the lattice we will find
Rzt Rog=Ras+ Ry;. (76)

n(x,t)=p+(1—p) fozwth*iq‘xdq, (89

For simplicity we first consider the large scale form of the
distribution functions. From E(65) we obtain

(2m)¢

n(gq,t)=n(q,00e 1, (77) B(X,1)= — 6~ 7

2 .

_ _ o
¢(q,t)=(q,0e 1177, (78 These integrals can be written in terms of modified Bessel

. . . . i — 2w o—igx+cosqt ;
Let us consider a situation at tinte0 where there arél,  unctionsly(t)=1/2mfg"e dg. Thus we find

particles of type 2 at the origin, i.eny(x,0)=N,4(X) in a
uniform set of particles of type 1 of density, i.e., ny(x,t)=p+(1—p—e 72e 2] | (2t), (90)
n1(x,0)=p. Thus the initial values of Fourier transforms are X

n1(9,00=p(2m)?3(q)  nx(9,0=N,, (79 ny(x,t)y=e"72%e 2] 1 (2t). (91)

or

— — V. DISCUSSION
n(q,00=No+p(2m)%5(q)  ¢(9,00=—y,N,. (80)
We have obtained the general condition under which the

Inserting these into Ed77), we find hierarchy of equations far-point functions of a multispecies
— q R reaction-diffusion system truncates at all orders, that is the
n(q,0)=[Nz+p(2m)"5(q)]e equations of motion of-point functions depend only on

ENZe*‘q‘2‘+p(2w)d5(q), (81) those of lower correlation functions. Also under the above

conditions the equations of motion of two-point functions at

— _ ~(ratlat different times f_orm a closed s_ystem. We have selgcted out a

#(q,t)=—y2Nze : 82 glass of 2 species models which may be appropriate for the
escription of the spread of an epidemic or as a voter model.

Taking the inverse Fourier transform and using the definition_": . S .
his work can be extended in several directions, even if one

(52) we find . : ;
restricts oneself to the two-species models. First, one can
N , study other two species models which include coagulation,
ny(x,t)=p+ 2d/2 e X741 — e 72ty (83)  decoagulation or birth and death processes. Second, in the
(4mt) two-species model one can change our interpretation of 0

particle as a hole and take it to be a real particle. In this way
X214t oyt one can adapt the rates for description of other models.

e e 7 (84) Third, one can study also the asymmetric models and relax
(4mt)9/2 , ONeé € y als Y

85) our simplifying assumption on the symmetry of rates, and

finally one can consider the similarity transformati@28-—
The initial number of particles of type 2 diffuse and gradu-31] on the model to obtain the other exactly solvable models.
ally the particles of type 2 turn into type 1. At the end, no  Note added in proofAfter the original version of this
particle of type 2 remains. paper was submitted | was informed by one of the authors of
We can also consider the small scale behavior of thesRef.[32] that Eqs.(28) and(29) have already been obtained

distributions. In this case the solution of the E@63) is by these authors. Their considerations, however, are re-
given by modified Bessel functions. We give below the so-stricted to one dimensional lattices and to equal time corre-
lution for the initial distribution of one particle of type lation functions.

nz(X,t) -
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